Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluRδ2 mutant mice
نویسندگان
چکیده
Of the six glutamate receptor (GluR) channel subunit families identified by molecular cloning, five have been shown to constitute either the AMPA, kainate, or NMDA receptor channel, whereas the function of the delta subunit family remains unknown. The selective localization of the delta 2 subunit of the GluR delta subfamily in cerebellar Purkinje cells prompted us to examine its possible physiological roles by the gene targeting technique. Analyses of the GluR delta 2 mutant mice reveal that the delta 2 subunit plays important roles in motor coordination, formation of parallel fiber-Purkinje cell synapses and climbing fiber-Purkinje cell synapses, and long-term depression of parallel fiber-Purkinje cell synaptic transmission. These results suggest a close relationship between synaptic plasticity and synapse formation in the cerebellum.
منابع مشابه
Molecular mechanism of parallel fiber-Purkinje cell synapse formation
The cerebellum receives two excitatory afferents, the climbing fiber (CF) and the mossy fiber-parallel fiber (PF) pathway, both converging onto Purkinje cells (PCs) that are the sole neurons sending outputs from the cerebellar cortex. Glutamate receptor δ2 (GluRδ2) is expressed selectively in cerebellar PCs and localized exclusively at the PF-PC synapses. We found that a significant number of P...
متن کاملDeficient Cerebellar Long-Term Depression, Impaired Eyeblink Conditioning, and Normal Motor Coordination in GFAP Mutant Mice
Mice devoid of glial fibrillary acidic protein (GFAP), an intermediate filament protein specifically expressed in astrocytes, develop normally and do not show any detectable abnormalities in the anatomy of the brain. In the cerebellum, excitatory synaptic transmission from parallel fibers (PFs) or climbing fibers (CFs) to Purkinje cells is unaltered, and these synapses display normal short-term...
متن کاملGlutamate receptor δ2 associates with metabotropic glutamate receptor 1 (mGluR1), protein kinase Cγ, and canonical transient receptor potential 3 and regulates mGluR1-mediated synaptic transmission in cerebellar Purkinje neurons.
Cerebellar motor coordination and cerebellar Purkinje cell synaptic function require metabotropic glutamate receptor 1 (mGluR1, Grm1). We used an unbiased proteomic approach to identify protein partners for mGluR1 in cerebellum and discovered glutamate receptor δ2 (GluRδ2, Grid2, GluΔ2) and protein kinase Cγ (PKCγ) as major interactors. We also found canonical transient receptor potential 3 (TR...
متن کاملThe role of CaMKII in cerebellar learning
Activation of postsynaptic Ca/calmodulin-dependent protein kinase II (αCaMKII) by calcium influx is a prerequisite for the induction of long-term potentiation (LTP) at most excitatory synapses in the hippocampus and cortex. Although cerebellar LTP and long-term depression (LTD) are also controlled by postsynaptic calcium levels, a role of αCaMKII in these processes has not been demonstrated yet...
متن کاملCdk5/p35 is required for motor coordination and cerebellar plasticity.
Previous studies have implicated the role of Purkinje cells in motor learning and the underlying mechanisms have also been identified in great detail during the last decades. Here we report that cyclin-dependent kinase 5 (Cdk5)/p35 in Purkinje cell also contributes to synaptic plasticity. We previously showed that p35(-/-) (p35 KO) mice exhibited a subtle abnormality in brain structure and impa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 81 شماره
صفحات -
تاریخ انتشار 1995